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Abstract

This work is a contribution to an ongoing co-operative research project between FOA in Sweden
and TNO-PML in the Netherlands, aimed at investigating the physics of water mitigation and to
formulate instructions and standards of how to use water barriers. FOA has focused on the scale-
modeling laws and to investigate if the mitigation is affected when the charges are cased.

The technique of damping blast from high explosives with "water barriers” of different types has
recently been studied by some research institutes and consultants. Examples on practical
applications are to reduce the most severe hazard area around an ammunition storage, on equipmer
for manufacturing or the destruction of ammunition etc. However, the results reported in this field
indicate that the mitigation effect from water is not yet fully understood. Although it has been
demonstrated to work well in many tests in small scale, unexpected results have occurred when
tested in full scale.

This paper contains a somewhat closer look on the blast mitigation effect from water for geometries
similar to a duct attached to a confined space, e.g. an access tunnel in to an ammunition storage. Of
special interest is then the dynamic pressure inside the access tunnel, caused by the shock and
guasi-static pressure from an explosion in the storage chamber, as well as the jet formed outside the
tunnel entrance. An effort is made to explain some results from scale model experiments in terms of
elementary thermodynamics and shock wave theory. This is illustrated by a set of numerical
simulations with the hydrocode AUTODYN using its two phase material model for water. The
calculated results are compared with the experiments, and it is concluded that the numerical model
to some extent describes the phenomena involved. Applied on real ammunition storage magazines
these data, in short, indicate a substantial pressure reduction in the storage chamber, but possible
problems with debris throw outside the access tunnel due to the high dynamic pressure in the flow.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 1998 2. REPORT TYPE 00-00-1998 to 00-00-1998
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Water Mitigation of Explosion Effects. Part 1: The dynamic pressure
from partially confined spaces

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
National Defence Resear ch Establishment (FOA),P.O. Box 24,5-195 21 REPORT NUMBER
Mar sta, Sweden,

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001002. Proceedings of the Twenty-Eighth DoD Explosives Safety Seminar Held in Orlando,
FL on 18-20 August 1998.

14. ABSTRACT
seereport
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 20
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



1. Background

The technique of water mitigation of explosion effects has recently been studied by several
consultants and researchers (/1/, 12/, 13/, 141, 5/, 16/, 115/, 116/, /17/). Examples on practical
applications are to reduce the most severe hazard area around ammunition storage magazines,
around equipment for manufacturing or the destruction of ammunition, or even around suspected
terrorist bombs etc. An alternative is aqueous foam, the same type as is commonly used by fire-
squads. Foam has been investigated quite well both experimentally and theoretically and is found to
have a considerable damping effect on shock-waves both in the free air, in confined spaces as well
as in tubes and tunnels. But as foam has no long-time stability, pure liquid water in suitable
packages is instead considered for ammunition storages and other situations with lasting hazard
areas. The problem of potential leakage of water is nowadays eliminated, due to plastic containers
of different types, which are intended to break up only when exposed to a detonation (e.g. in /7/,
where tests of one such product is reported).

The mitigation effect from water has been demonstrated to work well in many situations, but some
unexpected results have also been reported. One example is a full scale test simulating a detonating
ammunition storage in a rock tunnel, performed by the KLOTZ-Club in Alvdalen, Sweden in 1996
/3/. The results when water barrels were placed close to the charge were compared with a former
test without water, but with the same charge and tunnel geometry. It was then found that the
pressure, especially outside the tunnel, rather increased slightly than was reduced, as intended.

In this paper, the dynamic pressure from the water vapor flow from a partially confined space is
modeled for a case when the water mitigation technique is used for an explosion in a chamber with
an attached duct (the “shotgun” geometry). It also intends to give a somewhat broader view on the
physics of the water mitigation technique, as well as on some other experiments reported.

2. Review of applicable physics

2.1 Shock-wave pressurelhe air shock-wave is a complex, dynamic phenomenon which

comprises both a wave and a flow simultaneously; its pressure can be measured and described in
different ways. Figure 1 illustrates the fundamental difference betwestatiepressurand the

dynamic pressuref a flow, inside and outside a tunnel. ®hbatic pressure, denoted p’, is the

pressure of the compressed gas inside the wave, caused by the gaseous combustion products from
the HE, superposed on the surrounding air pressure. One way to measure p’ is with a transducer
mounted with the diaphragm flush with the propagation direction (thereby it is also called “side-on”
pressure). The dynamic pressure, denoted q is actually the kinetic energy of the moving gas, which
is related to the drag force that a fix object expirence when exposed to (i.e. surrounded by) the
shock wave flow. The dynamic pressure is described by:

(1) g= % 9xp where vdenotes the velocity gnthe density of the gas flow.
Clearly, this differs from the internal, static pressure of the gas as it depends only on the density and

the velocity vector of the moving gas (although a relation between the dynamic and the static
pressure do exist for shock-waves in defined situations).



A device to measure the dynamic pressure in a shock flow can be obtained if the above described
“side-on” gage is supplemented with a transducer with its diaphragm mounted perpendicular to the
flow direction, preferably on a thin nozzle with aerodynamic shape. This gage then senses the
stagnation pressuregy but according to /11/ p.45, a good estimation of the dynamic pressure is the
difference between the stagnation pressure and the static pressure; it can therefore be calculated
from the relation q= (g p’) ; this is relevant only in one direction, e.g. for one-dimensional flows.

In experiments with shock waves often only p’ is measured; then one assumes that the properties of
the gases in the shock flow are known. If the gases, however, have some unknown characteristics, it
is important to measure also g to correctly describe the flow. This can be illustrated by a shock-
wave in a tunnel that enters free air, figures 1 and 2. Inside the tunnel, the shape of the two different
types of pressure traces coincide fairly well close to the wave front; at the rear part of the wave they
differ a bit more and outside the tunnel they are entirely different.
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Figure 1. Air shock wave pressure traces from gages inside and outside a tunnel

Figure 2. Shock-wave and flow outside a tunnel.

Two effects combine outside such a tunnel exit, as indicated in figure 2. When the shock wave
reaches the open air, it immediately starts to expand in all directions as an almost spherical "shell”
(as waves have no inertia) while the moving gas, due to its inertia forms a jet outside the tunnel
which follows right behind the shock wave in the centerline direction. This explains the pressure
histories in figure 1 where the p’-gage outside the tunnel only senses the pressure when the thin
shell-formed shock wave passes, while the q gage first senses a sudden movement in the air when
the shock wave passes, and then the long-duration force when it is reached by the jet; this is shown
by authentic pressure recordings in the Appendix, also in /13/, /14/ and /17/. In [14/, experiments
are reported with a shock tube with gages located in front of the tube exit which, together with
shadow-graphs, show a jet that is quite narrow ( a few tube diameters) up to some distance and ther
dissolves into eddies and disappears at larger distances, as shown in figure 3.



Figure 3. Stagnation pressure measurement on a jet, dissolved into eddies at large distances.

These experiments (with one-phase flow; helium was used as driver gas) indicate that the range of
the jet is determined by the geometry of the duct, the exit pressure (i.e. the flow speed) and the
duration of the flow. It was concluded, that several properties of the gases influence such a jet.
Although the relations that describe all the situations above are complicated they can, to a large
extent, be analyzed with well-defined ideal-gas models. Also, the behavior of the two-phase flow
that occurs when a real gas like water vapor is added, is possible to analyze to some extent with
simplified assumptions (as described in section 2.4).

2.2 Short about thermodynamicsWhen a mass amount (n moles) of an ideal gas undergoes an
adiabatic compression or expansion, the pressure p, volume V and temperature T are related by the
following equations (from /8/):

(2) pV=nRT (General Gas Law)
(3) pVP =constant  (Poisson’s Law)

where Gand G are the heat capacities at constant pressure and volume, respectively, and the gas
constant R = 8.314J/mol K. From the relatigyrC, +R => G/C, >1 together with equation (2) and

(3) above, it can be seen that the temperature always increases when a gas is compressed and
decreases when expanded. The ideal gas model is a quite good approximation for most cases with &
mix of air and detonation products like CO, £OIOetc. at moderate pressure levels (i.e. a few

MPa). A real gas, like water vapor, differs somewhat from the equations above, e.g. when a real gas
is expanded its temperature decreases more, which in some cases turns it into liquid or solid phase,
while an ideal gas by definition always remains in gaseous phase.

To describe an agent at different phases, tables on its density, temperature, volume, internal energy
etc. at different pressure values are used. Some relations can also be presented graphically, as for
water in figure 4. Among other things, this shows that there is a certain range in pressure and
temperature where water exists as a liquid. For temperatures beyond the critical point (647 K) it
can't be in the liquid phase, no matter the pressure increase. On the other hand: if the pressure is
very low, all the water will remain in the gaseous phase even when the temperature is decreased
(and then turns directly into ice crystals at a very low temperature). In figure 4b, derived from

figure 4a, the pressure-volume relation for the liquid—vapor region is plotted moreilntbeta
temperature is here implicit. A similar curve is piecewise implemented in the two-phase material
model of the hydrocode "TAUTODYN” /9/.

It can be noted, that water vapor at high pressure and temperature has a higher density than air if the
air is compressed from NTP (Normal Temperature and Pressure i.e. 273 K, 100 kPa) to a similar
pressure. The opposite (i.e. lower density than air) is valid for HE gas, due to its high temperature.



Critical point

P
Liquid
iqui /w
-
Two phase Liquid
Ice + vapor and Vapor region
Y
Y
Figure 4.
a) Pressure-Volume-Temp. relation for water. b) Simplified curve for two phases.

The Heat of Vaporization energy (HoV) for water is 2260 kJ/kg which is roughly one half of the
energy release from HE per kg, e.g. TNT has about 4850 kJ/kg. Hence, the energy from 1 kg TNT
has the ability to vaporize ca 1.8 kg cool, liquid water. According to table 1, the heat capacity for
typical HE gases is 4 - 5 times less than for water, i.e. when mixed with a water mist, the overall
temperature must decrease largely; so does also the pressure, according to the general gas law (2).

Agent Formula Heat capacity €
kJ/kg K

Carbon-dioxide CGO, 0.82

Carbon-monoxide CO 1.05

Nitrogen N> 1.04

Nitrogen-monoxide NO 1.00

Water H,O 4.2

Table 1: Heat capacities for some HE combustion products, compared to water (273K)

Different gaseous agents usually mix easily; this happens spontaneously due to the diffusion
phenomenon. The mix has average values from the included agents on properties like density, heat
capacity etc. As diffusion takes some time (depending on temperature, density etc.), a separation of
the different gases can be maintained for some time during very fast events like shock waves,
resulting in a contact surface between air and the combustion products. This can be experimentally
visualized by high speed photography, and can also sometimes be traced in the pressure recordings
It is easier to observe in a simple geometry, as in a duct with smooth walls, or in free air with
spherical expansion. Rough walls in a duct and obstacles inside will increase the diffusion and
mixing of the gases; it will simultaneously decrease the static pressure p’ of the wave front as well
as its velocity.



2.3 Interaction explosive-water Consider a water volume in the proximity of a detonating HE
charge, figure 5. The expanding gas volume will, as it hits the closest water surface, initiate a shock
wave inside the water volume and cause "spalling” on the opposite side of the volume.

Water Void with vapor Drops and vapor
™
Explosive ! HE gas
t0 t1 t2

Figure 5. Possible initial behaviour of explosive-water at three stagésand .

This will cause a void inside the water volume, which immediately fills with vapor. Due to the
pressure gradient, the whole volume will also start to accelerate and be “smeared out”, and because
of the different velocities in different locations inside, it seems likely that the volume is somewhat
later broken up into a cloud of water drops of different sizes. During this process, heat is transferred
from the hot HE gases to the water, both by heat radiation and by conduction. Simultaneously, a
shock wave is developed in the gas between the drops which, in the case of a confined explosion,
repeatedly will affect them with heat and acceleration when the wave is reflected against the walls.
This will cause them to break-up into smaller droplets which, due to the resulting large increase of
the total surface area of the water, also will increase the speed of heat transfer from the surrounding
HE gas.

From the above, there is reason to believe that the heat transfer to (and vaporization of) water is of
large importance for an explosion in a confined space. The cooling and phase transition will, despite
of a slight pressure increase from the vaporization, result in a decrease of the overall pressure; the
energy of the explosive is then to a large extent stored in the water as internal energy. In free air, on
the other hand, large parts of the observed water mitigation effect might instead be caused by a
mechanism when the water drops absorb a great deal of the kinetic energy from the expanding HE
gas and thereby suppresses the air shock wave in the surrounding space

2.4 Analyze methodsBecause of the above indicated differences in the water mitigation
mechanisms due to the surrounding geometry, it is suggested to split the problem into tree special
cases according to figure 6. Case A: HE, water (and air) confined in a closed volume, case B: HE
and water placed in free air, and finally case C: HE and water is partially confined, e.g. inside a tube
with one end entering free air. Case B is only briefly treated here (more extensive in /5/, /7/ and
/17); this paper concentrates on A and C and mixes between; i.e. a chamber with an attached duct.
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A) in a confined space B) In free air C) In a duct (tunnel)

Figure 6. Suggested principal cases for the geometry around the HE —water arrangement.

A numerical model to completely simulate the situations above should consider diffusion and heat
transfer, both from conduction and radiation between the HE gases, air and water. It should also
deal with the formation of droplets when the water volume is crushed, accelerated and vaporized, as
well as condensing of the vapor imtmplets if cooled at a later stage. If the process takes place

close to a structure (e.g. inside a duct or chamber) the model should deal with friction and heat
transfer to the walls as well. All these extensions are today possible with advanced CFD codes,
however at a high cost. As a first approach, a numerical method is suggested which is applicable for
the case A and (possibly) C in figure 6. It is easily implemented by a hydrocode with a two-phase
liquid-gas material model, as follows:

1. Assume that the water absorbs all of the energy released from the explosive (HE).
2. Replace HE with hot, pressurized water with similar energy, using the two-phase model.
3. Use an ideal gas model to fill the remaining space with air at NTP ("normal” pressure and temp)

When initiated, the water temperature should be close to the critical point (647 K) in order to
provide a possibility for a maximum amount of water to vaporize (for a case with an excess of water
compared to the HE energy, that part could be modeled as one phase material). After initiation, the
water volume will start to vaporize, expand and "push” the surrounding air into shock-waves. The
method is very approximate, especially for the initial interaction water - explosive; still it can
illustrate some important phenomena for an explosion with high loading density in a chamber and
also inside and outside an attached tunnel. Implemented on AUTODYN /9/ the model neglects heat
transfer, viscosity and friction.

In the Appendix an AUTODYN model according to the above method is applied on the FOA tests
described in /17/. The steel-cased 1.5 kg plastic explosive was, due ca 25% expected initial losses
when the case fragmentizes, modeled as 1.1 kg PETN without water. The test with water was
modeled with a similar energy in 3 kg hot pressurized water as the only "explosive”. Figure 9 in the
Appendix shows the test set-up, figure 10 the numerical model and the following figures (11-17)
shows pressure-time histories from the target points in the numerical model and recorded data from
the gages in the experiment for comparison.



3. Review of experimentgreferring to the geometry cases "ABC” in figure 6)

A was investigated at FOA Grindsjon in 1994 by Forse’n (reported in /2/) where 0.5 kg HE
surrounded by 2.5 kg water in plastic bags was detonated in a 1.2x1.5x 2.6)8l6s®d

explosion chamber with pressure gages mounted inside. Two tests with water were compared with
0.2 kg HE without water. In both cases there was also a concrete slab mounted as one of the cubes’
six walls. From earlier tests it was known, that this wall collapses when 0.5 kg HE is detonated in
the volume, but after these two tests it was almost unaffected. The pressure gages confirmed this
result, and it was concluded that the water reduced the "equivalent charge” by approx. 60 %.

Similar tests were made by Ericsson /5/ in 1974, in smaller scale. However, all those tests must be
regarded as a mix between case A and B because of their low loading density. Recently, a few small
scale tests with higher density (4 k§jrwas made by FOA /17/. Full scale tests with ammunition
magazines are reported by Keenan and Wager /1/.

B was investigated by Ericsson 1974 in small scale /5/, and by Vermuelen 1995 in larger scale /7/.
Ericsson tested 50 gram TNT charges surrounded by 2x, 5x and 10x its’ weight by water. The
charge was placed inside a balloon i.e. completely surrounded by water. The pressure was measure
with gauges 0.7 meter from the charges. The results showed, that the peak pressure was reduced by
approx. 5-20 % compared with bare charges, but one have to remember the scaling law for free

field : r / Q*°; i.e. the actual "equivalent charge” was reduced by at least 50%. Recently, also tests
with 20, 30 and 40 gram plastic explosive surrounded by water hemispheres up to 1 kg have been
reported by Rinaudo, Smith and Rose with similar results /15/. Tests reported by Vermuelen /7/

with 10 kg HE close to approx. 1 ton water stored in specially designed water-bags ("Dellex”),
resulted in a 95% reduction of the side-on peak pressure near the site and a sound reduction of 12
dB on large distances (2000 meters).

C. A few tests were made by Ericsson 1974 /5/ but has recently been closer investigated by FOA in
small, medium and large scale /2/,/3/,/4/. The tests are usually not "clean case C” as they have a
slight area change in the tube (large area changes are treated separately as “case A+C”, below)

In small scale a 1:20 simplified model of the "Klotz-tunnel” in Alvdalen was tested with 200 g HE
surrounded by 400-600 g water in plastic cups (this corresponds to 1600 kg HE and 3200-4800 kg
water in full scale). The explosion chamber was a tube with cross section ,a325m by

length and was connected to a 3.75 m long steel pipe with cross-section 0°0Bidayon

pressure was measured in 3 locations: two gages were placed in the walls inside the pipe and one
was located 1.25 m outside the pipe, right in front of the muzzle, where also a stagnation pressure
gage was mounted in a few shots. Some of the results from the tests are published in /4/.

In medium scale a number of tests have been performed with shock-tubes, most of them in

"tube4” (cross-section 1.84nFOA Marsta), a few also in "tube3” (cross-section 4?4 also at

FOA Marsta). The charge weight in "tube4” was 1-5 kg HE , used with and without water bags and
barrels in the range 1- 25 kg. With "tube3”, tests were performed with charges up to 100 kg. The
measured pressure-time histories, published in /2/ and /6/, are only from side-on pressure gages,
which were located inside the tunnels at quite long distances away from the explosion chamber. No
measurements of stagnation or dynamic pressure were made.

In large scale,one test was performed by the "KLOTZ-Club” in Alvdalen 1996. The charge was
artillery rounds, corresponding 1®00 kg HE in total. The geometry was similar to the small scale
tests, but with some important exceptions: a) a tunnel crossing about 15 meters from the explosion
site b) tunnel wall roughness was much larger, estimated to 0.2 m. c) the walls and the floor in the



tunnel were (probably) wet. d) a barrier was built outside, in front of the tunnel exit. Measurements
were made at several locations, both inside and outside the tunnel, but no gage was mounted close
to the explosion site, and no measurement of stagnation or dynamic pressure was made inside the
tunnel. The results (/3/) are ambiguous; the test is briefly discussed in section 4.

A+C: Some important tests made with models of ammunition storage magazines can be regarded as
a "mix” between geometry A and C. Their properties are expected to depend on some main
geometry characteristics, as indicated in figure 7.

Chamber Duct area A
Volume V O O

Chamber O :\;z O

cross sect.

area A Duct length L

Figure 7. ‘Mixed geometry’ A + C (according to figure 6).

This type of structure has been tested by Joachim and Lunderman /16/. The chamber volume was
0.365 m, the duct area was 0.017 and its length 4.0 m. Charge densities in the range 1.67 to 5

kg/nT were tested with water / explosive ratios from 0.67 up to 3.3. The water was arranged so it
completely surrounded the explosive. Measurements were made of the pressure inside the chamber
and in the duct both the side-on and the stagnation pressure gages were mounted. Similar gages
were also located outside the test specimen. In short, the results indicate a lowering of the pressure
in the chamber by about 70 % with water present, about the same figure also occurresider the

on gages, both inside the duct and outside. stagnationgages in the duct, however, showed less
reduction with water: about 30-40 %. The results from the stagnation and side-on gages outside the
duct (located on a plane surface ca 0.4 m below the exit) had no such large differences.

FOA recently made a similar test /17/ (also treated as “case A”, above). Figure 9 in the Appendix
shows a drawing of the structure and the gage locations used. The chamber volume Wagith4 m

an attached circular duct, area 0.053md length 2.8 m. The charge density was 4 kgimd the

water to explosive ratio 2; the water was arranged as two ‘rings’ around the cylindrical charge. The
pressure inside the chamber was measured in 2 locations, and 2 gages for side-on pressure were
located in the first part of the duct. Outside, a stagnation pressure gage was mounted on a distance
of 2 meters, right in front of the duct’s exit, together with a side-on gage in the same location.
Altogether, 6 gages were used in this experiment. The results are quite similar to the tests made by
Joachim and Lunderman, except that stagnation pressure was not measured inside the duct. Instead
the gage that was located right in front of the duct’s exit (this gage had no counterpart in the
Joachim and Lunderman tests) showed almost no reduction in stagnation pressure when water was
present. However, considering that the stagnation preissiglethe duct, measured by Joachim

and Lunderman, also indicated rather small reductions with water, this seems quite plausible.

The aim with the FOA tests was also to investigate if the water mitigation was affected if the

charges were steel-cased or not; this refers to the Alvdalen test /3/ where artillery rounds were used.
The charge in the model tests were thereby cased in a hollow, pre-fragmented steel cylinder,
weighing 4.5 kgNo such effect could, however, be noted with any significance, /17/ p.12.



4. Discussion

From the experiments, it seems likely that the water mitigation works well for the principal cases A
and B, provided there is, by some means, a "balance” in how the water and the explosive is
arranged; the expression "balance” is used because "loading density” is only applicable to confined
spaces as case A, possibly to case A-C, but not for the cases B and C.

Case A:The energy of the explosive vaporizes the water and is to a large extent stored in the HoV
(this is valid for charge densities of some k§j/low charge densities approaches case B below).

The vapor is likely to cool down slowly in contact with the chamber walls, which also absorb the
HoV when the vapor later is condensed to liquid water. If small leaks from holes and slots in the
chamber occur, they contribute to increase the speed of the pressure decay; large leaks are treated
below as case A+C. The effect of different loading densities on the mitigation capacity is briefly
discussed by Keenan and Wager (/1/, Chapt.3.2).

Case Bis somewhat more complicated. Only a small part of the water is likely to immediately
evaporate by the heat energy from the explosive; the major part will probably remain as liquid
water, accelerated by the expanding HE gases, broken up into droplets and thereby absorbing
kinetic energy from the shock-wave, as described in section 2.2. Even later, evaporation and
condensation may occur, close to the detonation point where the droplets and vapor relatively
slowly flows out in all directions. This process will however not contribute to the fast shock-wave

in free air, that is now far away from this area and hence will remain mitigated. With this
explanation, it seems likely that the initial geometrical arrangement water-explosive will have a
great influence on the result, which is in accordance with several experiments reported, e.g. /5/ and
/15/. This is also valid for case A with low charge densities.

Case Cmight be the most complicated one; below some phenomena are suggested, believed to be
of importance for this case. Assume that, similar to case A, the water is immediately heated by the
HE, and a (partially) confined volume of air, HE gas, water drops and vapor at high pressure and
temperature (however lower than without water) is formed. But, compared to case A one wall is
missing, so the vapor- HE gas mix starts to expand in that direction through the tunnel, pushing the
air that initially was there in front of it, which forms an air shock wave. In this situation, at least
three sub-cases (C1, C2, C3) should be considered:

C1 The tunnel walls are smooth and dry; a contact surface might then occur between the mix of
vapor and HE gases and the air inside the tunnel, as described in section 2.3. When the vapor
behind the air shock front expands it might start to condense due to cooling from the tunnel walls,
or when it expands in cool air outside the exit. When a shock-wave flow in gas phase leaves a
tunnel exit, a jet is formed where the static and dynamic pressure differ significantly, as described in
section 2.1. The static pressure in the wave front could be quite unaffected by the vapor, but the
later arriving dynamic pressure increase is likely to be influenced, e.g. by a higher density and a
change of gas velocity inside the jet. This is also in accordance with the calculated jet outside a duct
attached to an explosion chamber, shown in the Appendix (figure 17).

C2 The tunnel walls are rough; the vapor and the surrounding air will now mix to a much larger
extent which will put the vapor with its high internal energy closer the shock front; the front is also
slowed down and mitigated by the wall roughness. It seems likely that this affects the shock front
when it leaves the muzzle in some way. In order to separate such an effect from the mitigation

10



due to the wall roughness, a comparison with expected data from a similar one-phase flow can be
made, either from empirical data or from a hydrocode calculation with viscosity, friction and heat
transfer included (e.g. the RCM code “OneD” /10/).

C3 The tunnel walls are wet before the explosion, which can increase the amount of water and
vapor in the flow as the shock front might absorb water from the floor and walls as is "sweeps”
along the tunnel. This was indicated when the small scale tests (reported in /4/) were made. The
experimentalists noted that in order to obtain reliable results, with and without water, it was
important to get the test specimen completely dry between the tests. This is a memento when efforts
are made to analyze the full scale test in Alvdalen, where the tunnel probably was soaked with an
unknown amount of water inside, possibly also where the charge was located. This could have been
the case, both for the “water mitigation” test /3/ in 1996 as well as the reference test “without

water” /12/, made in 1989.

A+C 'mixed geometry’. In the Appendix, results from the experiments made by FOA /17/ and
computer runs with this geometry are shown, together with the results reported by Joachim and
Lunderman /16/ they form the background for the following comments (figure 8):

10,0 " .

o O

Initial and Quasi-
1 p S M static pressure(QSP)

2 p.q Side-on and dynamic
3 p Side-on, outside
3 q Dynamic, outside

Figure 8. ‘Mixed geometry’ with typical pressure traces (not to scale)

Gage 1 first senses pressure peakfrom the initial wave front from the explosion, only partially
affected by the water (its height is very dependent on the geometry arrangement explosive-water).
Then, similar to case A above, the hot gases from the explosive builds up a Quasi-Static Pressure
(QSP), as indicated in the figure. The QSP amplitude not only depends on the explosive to chamber
volume ratio Q/V; it is alsaffected if theattached duct’s cross-section area is large (the geometry
then approaches case C). With water present the HE gases are cooled which results in less QSP
build-up. (This might look like a contradiction, as the water when vaporized demands more volume
and causes a QSP increase itself, but when calculated this effect is found to be much less than the
former, i.e. the pressure reduction due to cooling dominates).
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Gage 2first senses the (damped) initial peak, previously recorded by gage 1, followed by a gas flow
caused by the QSP in the chamber. The relation between the side-on and stagnation pressure
depends on the density of the gas, as described in section 2.1. A comparison between tests with anc
without water made by Joachim and Lunderman (/16/, Table 2) shows a large reduction of the side-
on pressure but the reduction of the stagnation (and thereby the dynamic) pressure is less, which
indicates that the density of the flow is higher when water is present. This is expected; as was stated
in section 2.2 water vapor has a much higher density than the hot gases from the explosive.

The same explanation is also relevantgage location 3vhen hit by the steam jet outside the

muzzle. The tests reported in /16/, that don’t have the stagnation gages right in front of the tube exit,
showed about the same low pressure as the side-on gages in the same locations. This must indicate
that they were outside the range of the jet; they were located on a plane, about 3 diameters below
the tube centerline. The numerical model from the FOA tests also shows that the resulting jets are
rather narrow (Appendix, figure 17). The results from target point 6 inside the jet show that the flow
velocity is 3 times higher without water, but as the density is then only €ah&hange in

dynamic pressure is almost cancelled, see table 2.

Calculated, 20 milliseconds| Flow velocity | Flow density Dynamic pressure
after expl. in target point#6 (g =% Vp)
Without water 1800 m/s 0.1 kg/m3 324 kPa
With water 600 m/s 0.8 kg/m3 288 kPa

Table 2. Calculated properties of the flow outside the duct (for the FOA tests).

The dynamic pressure is approx. 300 kPa in both cases, which is in accordance with the traces from
gage # 6 in the FOA experiments, shown in figure 13 in the Appendix.

4.1. Concluding remarks. From the reported analyses and experimental data, it seems that the

water mitigation technique works well, concerning the quasi-static pressure for confined explosions
with loading densities in the range of some Kg/But, if there is a small opening or an attached

duct where the gases slowly leak out it can be noted thduth&on of the QSP increases

compared to a case without water. This is naturally caused by the lower gas flow velocity due to a
lower pressure difference to the free air outside the structure, in combination with the larger mass
present when the water vapor (and/or mist) is added to the HE gases. This increased total mass alsc
causes a high dynamic pressure of the flow, both inside the duct and especially outside the exit; its
amplitude might there be almost as large as for a case without water, despite of the reduced flow
velocity. For a real situation with an exploding ammunition storage magazine with access tunnels,
this dynamic pressure can cause a jet inside and outside the tunnel that is capable of throwing heavy
debris quite a long distance. However, the total risk area for debris might still be reduced by the
water mitigation technique, because the lower flow velocity will be unable to accelerate light debris
to the very high velocities (thousands of m/s) that are typical from GP bombs detonating in free air.

Finally, it should be pointed out that there are several other mechanisms to consider for a risk

analysis for ammunition storage with water than is treated here; there might as well be several
possibilities to overcome the above indicated drawbacks of this technique.

12



ol

. References

1. W A Keenan and P C Wager "Mitigation of Confined Explosion Effects by Placing Water in
Proximity of Explosives” Pres. at the®BoD Expl. Safety Seminar, Anaheim CA, Aug 18-20,
1992

2. S Ericsson and B Vretblad “Blast Mitigation in Confined Spaces by Energy Absorbing
Materials” Pres.at the $®o0D Expl. Safety Seminar, Miami, Aug. 16-18, 1994

3. R Forsén, H Hansson and A Carlberg "Large Scale Test on Mitigation Effects of Water in the
Klotz Club installation in Alvdalen” FOA Report R—97-00470-311—SE (ISSN 1104-9154)
Sweden 1997

4. R Forsén, A Carlberg and S Eriksson "Small Scale tests on Mitigation Effects of Water in a
Model of the Klotz Club Tunnel in Alvdalen” Pres.at thd'Z¥oD Expl. Safety Seminar, 1996

5. S Ericsson "Water in Explosives Storage” pres. at thinéd Symp.Mil. Appl. Blast Simulation
(MABS) 1974

6. S Ericsson "Water Test, Test Data” Confortia Report 2:94, Eskilstuna Sweden 1994

7. W J Vermeulen "Verslag van de beproeving vanDetex watersakken” (in Dutch)

Culemborg, Netherlands 1996

8. “Klassisk Termodynamik och Kinetisk Gasterori’(in Swedish) TRU:s forlag, Stockholm
Sweden 1971

9. Century Dynamics Inc: "Autodyn, Theory Manual, Compendium of Papers on Material
Modeling”(of special interest: Chapt.3 "An Expansion of State Subroutine” by K Morgan
earlier published in Computer Physics Comm. 5, North-Holland Publishing Comp.1973)

10.C P Groth, J J Gottlieb "OneD: A Computer Program for Solving One-Dimensional
Nonstationary Flows in Ducts, Shock Tubes and Blastwave Simulators with the Random Choice
Method” University of Toronto 1986

11.G F Kinney, K J Graham "Explosive Shocks in Air” second edition, Springer-Verlag, N.Y.
1985

12.B Vretblad "Continued KlotzClub tests” Pres.at thd BDESB Expl. Safety Seminar,

St Louis M0.1990

13.H Axelsson, S Ericsson "A preliminary investigation of the pressure wave outside Shock tube
[l of the Royal Swedish Fortifications Administration” FOA Report n:o C 4514 - DR47,
Stockholm 1972 (also pres. at tH&18t.Symp.Mil. Appl. Blast Simulation (MABS)
Schwetzingen, Germany Sept 19-21 1972)

14.E Gion and C Kingery "Jet-Flow from a Simulated Explosive Storage Magazine using a Shock
Tube” pres. at the Flint. Symp. Mil. Appl. Blast Simulation (MABS) Albuquerque, N.M.
Sept.10-15 1989

15.M A Rinaudo, P D Smith, T A Rose "The Role of Water in Blast Reduction” pre& dt<ta-
Pacific Conference on Shock & Impact Loads on Structures Melbourne, Australia Nov. 25-27,
1997.

16. C E Joachim, C V Lunderman "Blast Suppression With Water - Results Of Small-Scale Test
Program”pres. at the I5Int. Symp. Mil. Appl. Blast Simulation (MABS) Canada, Sept 15-18
1997

17.H Hansson, R Forsén "Water mitigation of cased charges — A pilot test series”

FOA-R- - 97-00608-311- - SE, Stockholm Sweden, Nov 1997

13



Appendix : Results from numerical model, compared to experimental data

i‘ 200 800
160 >

L [] 5 0
Dia. o 1 R s 3 A . _I dia.260 6 ]
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Figure 9. Test specimen (in mm). In the following pages, calculated pressure histories from target
points 2 and 6 are compared with experimental traces in the corresponding gage locations.

Figure 10. Numerical model on the FOA tests /17/, made with AUTODYN.
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Figure 11. Calculated pressure-time history, inside explosion chamber
without water (upper), with water (lower), note: different scales.
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Figure 12. Experimental data: Pressure-time history inside explosion chamber

gage#2, without waterupper), with water (lower)

( Note the different scales, both on pressure and time axis between the registrations. The
disturbances on the traces might be caused by debris impacts on the wall, near the gage)
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Figure 14.Principal sketch of the used stagnation pressure gage.
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Figure 15. Calculated histories of flow speed in target #6 for the two cases:

without water(upper)/ with water (lower )
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Figure 16. Calculated histories of density in target #6 for the two cases: without / with water
Note: The notches in the density curves are caused by the different agents (HE gas, air,

water/vapor) present in the target location at different times.
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Figure 17. Calculated jets outside the muzzle after 15 milliseconds, without / with water.
Note: target #6 (inside jets) was located 90 mm from the centreline of the duct (dia. 260 mm).
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